MC110 Software Manual Release 7.4/1.0 Embention Sistemas Inteligentes, S.A. ### **Contents** | Scope of Changes | 3 | |--------------------------------------|----| | Software applications | 4 | | Veronte Link | 4 | | MC110 PDI Builder | 4 | | List of Variables | 5 | | BIT Variables | 5 | | Real Variables (RVar) - 32 bits 1 | 1 | | Integer Variables (UVar) - 16 bits 1 | | | CAN Bus protocol | 21 | | CAN Commands to MC110 | 21 | | Telemetry messages from MC110 2 | 22 | | Firmware Changelog 2 | 24 | | 7.4.6 | 24 | # Scope of Changes - Version 1.0 - Added: - First version issued # Software applications To properly connect and configure a MC110 unit, Veronte Link and MC110 PDI Builder are required. #### Veronte Link Veronte Link establishes communication between a computer and any Veronte product by creating a VCP bridge. It allows to use multiple control stations and autopilots to be interconnected, operating simultaneously. Veronte Link also includes a post-flight viewer, to reproduce all recorded data from previous flights and generate plots and reports. For more information, visit the Veronte Link user manual. #### MC110 PDI Builder This tool is used to set all the configurable parameters. Here the user can set, tune and define the motor, control systems and sensors that are going to be used alongside the ESC. For more information, visit the MC110 PDI Builder user manual. Users can find detailed information on how to perform Tuning of the MC110 in the Tuning section of the MC110 PDI Builder user manual. ## List of Variables This section shows the variables employed exclusively by **Veronte MC110**. The rest of variables can be read in the Lists of Variables - Lists of interest section of **1x Software Manual**. #### **BIT Variables** | ID | Name | Description | |----|-------------------------------|--| | 4 | No Writing
Telemetry | Telemetry is properly sending/receiving - 0 for no, 1 for yes | | 6 | File System
ERROR | System file manager - Dependent on File system status (UVar 96) • 0 for Error: if File system status > 0 • 1 for running OK: if File system status == 0 | | 7 | System ERROR | This bit checks whether the system is running properly. 0 for system error, 1 for system OK | | 8 | Memory
allocation
ERROR | RAM allocation - 0 for
Error, i.e. trying to use
more than available
memory, 1 for memory
allocation ok | | ID | Name | Description | |-----|----------------------------|---| | 9 | PDI ERROR | PDI files - Dependent on PDI error source (UVar 50) • 0 for wrong PDI configuration: if PDI Error Source > 0 • 1 for running OK: if PDI Error Source == 0 | | 12 | System Power Up ERROR | Power up - 0 for Error, 1
for OK | | 16 | Stack C1 usage
FAIL | 0 for Fail, i.e. stack
overflow of Core 1, 1 for
OK | | 400 | C1 Low
Frequency Fail | C1 Low Frequency - Dependent on CIO Running Frequency (RVar 2057) (C1 low frequency) • 0 for Fail → CIO Running Frequency < 10 Hz • 1 for OK → CIO Running Frequency > 10 Hz | | 402 | Acquisition Step
Missed | | | ID | Name | Description | |-----|---|---| | | | 0 for Acquisition step missed → C1 hi frequency fluctuation is higher than permitted (1%). 1 for Acquisition Task OK → C1 hi frequency fluctuation is under set limits (1%). | | 406 | CPU2 low priority task error | 0 for Error, 1 for OK | | 480 | MC01 Stepper
direction output
ERROR | 0 for Error, 1 for OK | | 481 | MC01 Brushless
driver fault | 0 for driver fault, 1 for driver OK | | 482 | MC Hall Sensor
ERROR | 0 for Error, 1 for OK | | 483 | MC Sin/Cos
Sensor ERROR | 0 for Error, 1 for OK | | 484 | MC General
health ERROR | 0 for health Error, 1 for status OK | | 485 | MC Current sensing ERROR | 0 for Error, 1 for OK | | 486 | MC Phase U
Current | ADC phase U calibration status - 0 for not | | ID | Name | Description | |-----|--------------------------------------|---| | | Calibration
ERROR | calibrated, 1 for calibration OK | | 487 | MC Phase V Current Calibration ERROR | ADC phase V calibration
status - 0 for not
calibrated, 1 for
calibration OK | | 488 | MC Phase W Current Calibration ERROR | ADC phase W calibration
status - 0 for not
calibrated, 1 for
calibration OK | | 489 | MC Maximum
Temperature
ERROR | Maximum power module
temperature exceeded - 0
for Error (exceeded), 1 for
OK | | 490 | MC Phase
ERROR | Power module driver
phase error reported - 0
for Error, 1 for OK | | 491 | MC General
Driver ERROR | Power module driver error reported - 0 for Error, 1 for OK | | 492 | MC Over-current
AC | Current AC side limit exceeded - 0 for Error (exceeded), 1 for OK | | 493 | MC Over-voltage
Advertisement | Over-voltage DC side limit
advertisement exceeded -
0 for Error (exceeded), 1
for OK | | ID | Name | Description | |---------|-------------------------------------|---| | 494 | MC Over-voltage
Caution | Over-voltage DC side limit caution exceeded - 0 for Error (exceeded), 1 for OK | | 495 | MC Under-
voltage Latching | Critical under-voltage DC
side limit violation - 0 for
Error, 1 for OK | | 496 | MC Under-
voltage ON
Latching | Non critical under-voltage DC side limit violation - 0 for Error, 1 for OK | | 497 | MC RMS
imbalance | Current AC side imbalance - 0 for Error, 1 for OK | | 498 | MC Open DC
fault | Open-circuite DC side fault - 0 for Error, 1 for OK | | 499 | MC Over-current
DC | Current DC side limit
exceeded - 0 for Error
(exceeded), 1 for OK | | 732-733 | Phase U-W
ERROR | 0 for Error, 1 for OK | | 734 | HW DC link
ERROR | 0 for Error, 1 for OK | | 735-736 | HW over-current
AC-DC ERROR | 0 for Error, 1 for OK | | 737 | HW Ground Fault Detection ERROR | 0 for HW Ground Fault
Detection Error, 1 for HW
Ground Fault Detection OK | | ID | Name | Description | |---------|-------------------------------------|---| | 738 | HW Power
Regulator
ERROR | 0 for HW Power Regulator
error, 1 for HW Power
Regulator OK | | 739 | HW trip PWM
ERROR | 0 for HW general error to
trip PWM, 1 for HW
general to trip PWM OK | | 740 | Disconnected
HW battery | 0 for Battery
disconnected, 1 for
Battery connected | | 741 | DC current
calibration
ERROR | 0 for DC current calibration Error, 1 for DC current calibration OK | | 742 | Estimation Position ERROR | 0 for estimation position Error, 1 for estimation position OK | | 743 | Speed reference
tracking ERROR | 0 for speed reference
tracking Error, 1 for speed
reference tracking OK | | 744 | Positon Sensor
ERROR | 0 for position sensor Error,
1 for position sensor OK | | 745-746 | SIN/COS 1-2
Calibration
ERROR | 0 for SIN/COS calibration
Error, 1 for SIN/COS
calibration OK | | 747 | Low energy
ERROR | 0 for low energy Error, 1
for low energy OK | ## Real Variables (RVar) - 32 bits | ID | Name | Units/
Values | Description | |------|--------------------------|------------------|--| | 51 | CAN-B Tx
Rate | pkts/s | CAN-B
transmission
packet rate | | 53 | CAN-B Tx
skip Rate | pkts/s | CAN-B messages
delayed because
no mailbox is
available for
sending | | 54 | CAN-FD-A
Tx rate | pkts/s | CAN-FD-A
transmission
packet rate | | 55 | CAN-FD-A
Tx skip rate | pkts/s | CAN-FD-A messages delayed because no mailbox is available for sending | | 300 | Relative
Timestamp | S | Time spent since power-on of the system | | 400 | Power Input | V | Voltage received by Veronte | | 1450 | Captured
Pulse 0 | customType | Input values from pulses | | 2048 | | S | | | ID | Name | Units/
Values | Description | |------|--|------------------|--| | | Acquisition Task Maximum Timestep | | Maximum period
to execute the
acquisition thread | | 2051 | Acquisition
Task
Maximum
CPU Ratio | % | Maximum % of CPU time spent in the acquisition thread | | 2057 | CIO Running
Frequency | Hz | C1 low priority
task running
frequency | | 2058 | MC CIO Min
Running
Frequency | Hz | Minimum assured frequency of low priority task | | 2092 | CPU2 Low
priority
current
frequency | Hz | Current operating frequency of CPU2 low priority tasks | | 2093 | CPU2 Low
priority min
frequency | Hz | Minimum assured
frequency of
CPU2 low priority
task | | 2330 | Control Loop
Period | S | MC control loop
period | | 2331 | Control Loop
Maximum
Period | S | MC maximum
control loop
period | | ID | Name | Units/
Values | Description | |-----------|---|------------------|---| | 2332 | Control Loop
Duration | S | MC control loop
average
execution time | | 2333 | MC Control
Loop
Maximum
Duration | S | MC control loop
maximum
average
execution time | | 2334 | Control Loop
CPU Usage
Ratio | % | MC CPU usage
ratio | | 2335 | MC Control
Loop
Maximum
CPU Usage
Ratio | % | MC maximum
CPU usage ratio | | 2336-2338 | MC U-V-W
Phase
Current | А | MC U-V-W phase
current | | 2339 | MC
Electrical
Angle | rad | MC electrical
angle | | 2340 | MC01
Mechanical
Angle | rad | MC mechanical angle | | 2341 | MC
Mechanical | rad/s | MC mechanical angular speed | | ID | Name | Units/
Values | Description | |-----------|---|------------------|---| | | Angular
Speed | | | | 2342 | MC01
Desired
Mechanical
Angle | rad | MC desired
mechanical angle | | 2343 | MC01 Position Controller Output | rad/s | MC position PDI
output | | 2344 | MC Desired
Mechanical
Angular
Speed | rad/s | MC desired
mechanical
angular speed | | 2345 | MC Desired Mechanical Angular Speed After Speed Limiter | rad/s | MC desired
mechanical
angular speed
after speed
limiter | | 2346 | MC Speed
Controller
Output | А | MC speed PDI
output | | 2347-2348 | MC Alpha-
Beta
Current | А | MC alpha-beta
current after
Clarke
transformation | | ID | Name | Units/
Values | Description | |-----------|---|------------------|--| | 2349-2350 | MC Actual Direct- Quadrature Current | А | MC actual direct-
quadrature
currents | | 2351-2352 | MC Desired Direct- Quadrature Current | А | MC desired direct-
quadrature
currents | | 2353-2354 | MC Direct-
Quadrature
Voltage
From
Controller
Output | V | MC direct-
quadrature
voltage from PIDs
outputs | | 2355-2356 | MC Alpha-
Beta
Voltage
From
Current
Controller
Output | V | MC Alpha-Beta voltage from current controller output | | 2357-2358 | MC01 Desired Clarke Alpha-Beta current | customType | MC01 desired
Clarke alpha-beta
currents | | 2359-2361 | MC01 U-V-W
Phase | customType | MC01 phase time constants | | ID | Name | Units/
Values | Description | |-----------|--|------------------|---| | | Space
Vector
Generator
Output | | | | 2362-2364 | MC U-V-W
Phase PWM
Duty Cycle | % | MC U-V-W Phase
PWM duty cycle
outputs | | 2365 | MC01
Encoder
Raw Angle | rad | MC01 encoder
raw measured
angle | | 2366 | MC01
Stepper
Output
Frequency | Hz | MC01 stepper output frequency | | 2367 | MC
Mechanical
Angle Error | rad | MC mechanical angle error | | 2368-2370 | MC U-V-W
Phase BEMF | V | MC U-V-W phase
electromechanical
force | | 2371 | MC Input
Current DC
side | А | DC bus current | | 2372 | MC Input
Normalized
Command
Speed | customType | Speed input rate
from source (CAN
or PWM) | | ID | Name | Units/
Values | Description | |-----------|---|------------------|---| | 2373-2374 | MC ADC in
0-1 | V | Note System reserved Variables | | 2375 | MC Logic Board K Temperature | | Board
temperature | | 2376 | MC Power
Module
Temperature | K | IGBT filtered
temperature | | 2377 | MC Motor
Temperature | K | Motor
temperature | | 2378 | MC Input
Voltage DC
side | V | DC bus voltage | | 2381 | MC Virtual and estimator angle difference | rad | Angle offset value from estimated and commanded angle to close control loop | | 2382 | MC Low speed estimator angle | | Low speed
observer
estimated angle | | 2383 | MC High
speed | rad | | | ID | Name Values | | Description | |------|--|-------|---| | | estimator
angle | | High speed
observer
estimated angle | | 2384 | MC Low speed estimator speed rad/s | | Low speed observer estimated mechanical speed | | 2385 | MC High
speed
estimator
speed | rad/s | High speed
observer
estimated
mechanical speed | | 2386 | String DC current | А | String direct current (DC) | ## Integer Variables (UVar) - 16 bits | ID | Name | Description | |----|------------------------|---| | 50 | PDI error source | Index for PDI error source identification. For further information, consult the List of PDI errors - 1x Software Manual | | 95 | UAV hardware
adress | UAV address | | 96 | | State error for DFS2
FS | | ID | Name | Description | |---------|---|--| | | File system
status | For further information, consult the List of File System Errors - 1x Software Manual | | 454-456 | CAN to Serial 0-2 frames dropped | Lost messages during CAN to Serial transformations | | 495-496 | Global configuration state (crc) of files-memory (Higher-Lower 16 bits) | Global configuration
state (crc) of files and
memory | | 498-499 | Global
configuration
state (crc) of
files-memory | Global configuration
state (crc) of files and
memory | | | | Index of the MC error | | 800 | MC Fault Id | Warning Deprecated variable | | 801 | MC Input Control
Mode | Index of the MC control input mode: | | ID | Name | Description | |-----|---------------------------------------|---| | | | 1: PPM 2: CAN 3: both modes active (CAN priority) | | 802 | MC Actual
Control Machine
State | State of motor controller: • 0: Motor stop and driver disabled • 1: Calibration of ADC reading • 2: Initial alignment procedure • 3: Open loop procedure • 4: Speed mode | # **CAN Bus protocol** #### CAN Commands to MC110 **MC110** can receive commands from any CAN device. All CAN messages for **MC110** follow the same structure, a string of bits divided in two groups: | Group | Name | Size | Description | |-------|---------|--|--| | 1 | CAN Id | 11-bits:
standard
29-bits:
extended | If the CAN Id matches with the Id of a MC110 input filter (a type of CAN consumer), the message will be correctly read by the MC speed filter consumer. Otherwise, it will be ignored. | | 2 | Payload | 4 bytes | Speed must be represented with a compressed 32-bit signed variable with little endian format. The values of this variable should be in the range [0 to maximum RPM (speed)] or [-maximum RPM to maximum RPM], depending on whether users want to allow negative commands. | | Group | Name | Size | Description | |-------|------|------|---| | | | | Note Negative values command the opposite movement to positive ones. Therefore, the maximum value corresponds with the maximum speed and the maximum negative value corresponds with the maximum reversed speed. | The parameter that is configured in the **MC110** to receive these CAN commads is the **CAN Id** of **Input filter** producer, which has to be linked to the **CAN Cmd** consumer. To know more, read the CAN I/O - Input/Output section of the **MC110 PDI Builder** user manual. An example for sending commands from **Veronte Autopilot 1x** to a **MC110** unit is explained in the MC110/MC24 - Integration examples section of the **1x PDI Builder** user manual. #### Telemetry messages from MC110 Telemetry messages can be transmitted from the **MC110** unit to provide information of interest to the user, such as the board temperature or the input command values. CAN messages sent by **MC110** have also the structure: - CAN Id: It can be in standard frame format (11-bits) or in extended frame format (29-bits). The CAN Id frame format will depend on the CAN protocol of the receiving device. - 2. Variable: Users can send as telemetry the variable they want to know information about. All the variables available to be sent from the MC110 unit can be consulted in the lists of variables section of this manual. The format in which these variables must be sent will depend on the CAN protocol of the device that will read the message. Detailed information on **how to build CAN messages** can be consulted in the Custom Messages types - Input/Output section of the **1x PDI Builder** user manual. # Firmware Changelog This section presents the changes between firmware versions of MC110. #### 7.4.6 This section presents the firmware changelog of the release **v.7.4.6**. For further details, please consult the Service Bulletin nº 00010. #### **Added** - New control states from the motor controller: Hold Zero RPM (set zero speed), Zero Current (be windmilling). - New current limiter implemented in D-Q axis for sensored mode. Optional regenerative current limiter to prevent over-voltage. Optional output power limitation when DC voltage drops below threshold values. - Support and calibration for Sin-Cos sensors. - CAN-FD support - A new High Frequency Diagnostics Data recording message enables logging of potential faults during flight. - New FW updating feature: Serial Over CAN using CAN 2.0. - New application alert when 90% of consumption is reached on either C1 or C2 high-priority task. - New fault detection for low energy detection. - STANAG support included. - The speed controller now has tracking signal feedback scaled by a configurable gain in order to prevent wind-up and improve signal tracking. The current controller now recalculates its integral gain to compensate for motor temperature variations. #### Removed The minimum speed and time for going to IDLE mode have been removed from the Control configuration, as it is possible to implement that externally. #### **Improved** - Non-latching under-voltage protection is now triggered with the correct time configuration, instead of with the latching under-voltage timing. - Caution/Advertisement over-voltage protections are now unified into a single protection. - Power module temperature is now filtered using a second order Butterworth filter and computed in the high-priority task. - SW architecture updated from single-core to dual-core for faster control execution.